

Случайные величины

Функция распределения

$$P(X < x) = F(x)$$

Плотность распределения вероятности

$$P(a < X < b) = \int_{a}^{b} \rho(x) dx$$

$$\rho(x) = F'(x)$$

$$\rho(x) = F'(x) \qquad F(x) = \int_{-\infty}^{x} \rho(x) dx \qquad \int_{-\infty}^{\infty} \rho(x) dx = 1$$

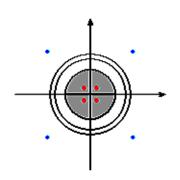
Теория вероятностей

Математическая статистика

Математическое ожидание

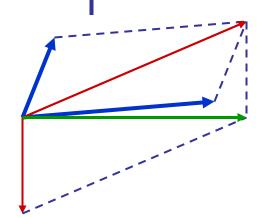
$$M(X) = \int_{-\infty}^{\infty} x \rho(x) dx \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$


Эмпирическое (выборочное) среднее

$$D(X) = \int_{-\infty}^{\infty} [x - M(x)]^2 \rho(x) dx$$
 Дисперсия
$$s^2(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$s^{2}(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$


$$D_{x} = \overline{(x - \overline{x})^{2}} = \overline{(x^{2})} - (\overline{x})^{2}$$

$$\sigma_{X} = \sqrt{D(X)}$$

Сложение случайных погрешностей

$$Z = X \pm Y$$

$$\overline{Z} = \overline{X} \pm \overline{Y}$$

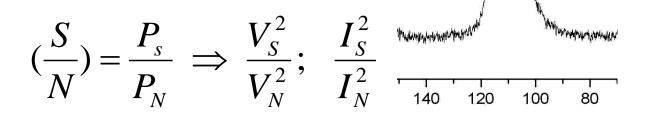
$$\sigma_z^2 = \sigma_x^2 + \sigma_y^2$$

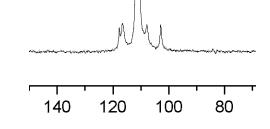
$$Z = X \pm Y$$

$$\overline{Z} = \overline{X} \pm \overline{Y}$$

$$\sigma_{z}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2}$$

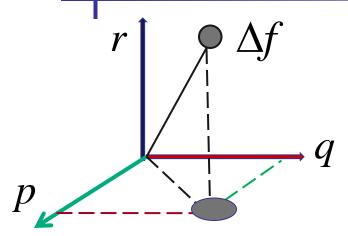
$$Z = X \cdot Y$$


$$\overline{Z} = \frac{X}{Y}$$


$$\overline{Z} = \overline{X} \cdot \overline{Y}$$

$$\overline{Z} = \frac{\overline{X}}{\overline{Y}}$$

$$\sigma_{z}^{2} = \sqrt{(\frac{\sigma_{X}}{\overline{X}})^{2} + (\frac{\sigma_{Y}}{\overline{Y}})^{2}}$$


$$\varepsilon_N = \frac{\sigma_N}{x_N} = \frac{\sqrt{N}\sigma_1}{Nx_1} = \frac{1}{\sqrt{N}}\varepsilon_1$$

«Закон распространения ошибок»

Масс-спектрометрия

$$\frac{mv^2}{2} = Ue$$

$$\frac{mv^2}{r} = e \vee H \qquad (m/e) = \frac{H^2r^2}{2U}$$

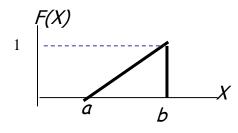
Косвенные измерения

$$x = f(\overline{p}, \overline{q}, \overline{r}, \dots) + \Delta f$$

$$\Delta f = \frac{\partial f}{\partial p} \Delta p + \frac{\partial f}{\partial q} \Delta q + \frac{\partial f}{\partial r} \Delta r + \dots$$

$$\sigma_x^2 = \left(\frac{\partial f}{\partial p}\right)^2 \sigma_p^2 + \left(\frac{\partial f}{\partial q}\right)^2 \sigma_q^2 + \left(\frac{\partial f}{\partial r}\right)^2 \sigma_r^2 + \dots$$

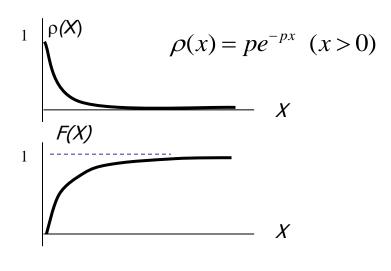
$$\frac{mv^{2}}{r} = evH \qquad (m/e) = \frac{H^{2}r^{2}}{2U}$$


$$(\delta(\frac{m}{e}))^{2} = (\frac{2rH^{2}}{2U})^{2}(\delta r)^{2} + (\frac{2r^{2}H}{2U})^{2}(\delta H)^{2} + (\frac{r^{2}H^{2}}{2U^{2}})^{2}(\delta U)^{2}$$

Какие встречаются распределения?

Равномерное

$\rho(X) = \frac{1}{b-a} \quad (a \le x \le b)$



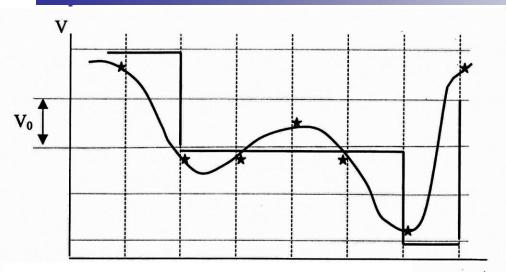
$$F(x) = \frac{x - a}{b - a} \quad (a \le x \le b)$$

$$\mu = \overline{x} = \frac{b+a}{2}$$

$$D(x) = \frac{(b-a)^2}{12}$$

Экспоненциальное

$$F(x) = 1 - e^{-px} (x > 0)$$


$$\mu = \overline{x} = \frac{1}{p}$$

$$D(x) = \frac{1}{p^2}$$

$$D(x) = \frac{1}{p^2}$$

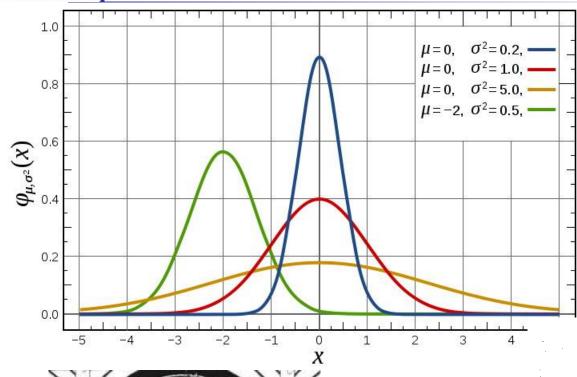
Шумы цифровой записи

$$V_0 = \frac{V_i}{2^n}$$

$$|Q| \cong V_0 / 2 = \frac{V_i}{2^{n+1}}$$

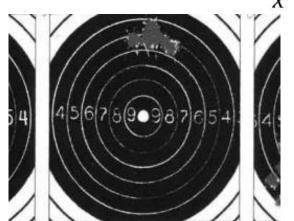
$$D = \sigma_Q^2 = \int_{-\infty}^{+\infty} (Q - \overline{Q})^2 \rho(Q) dQ$$

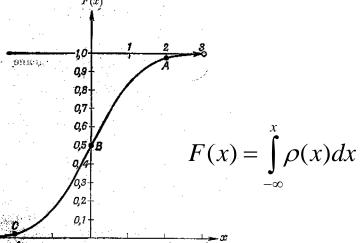
$$D = \int_{-\infty}^{+\infty} Q^2 \rho(Q) dQ = \int_{-V_0/2}^{+V_0/2} Q^2 \rho(Q) dQ = \frac{Q^3}{3V_o} \Big|_{-V_0/2}^{+V_0/2} = \frac{V_0^2}{12}$$


$$\sigma_Q = \frac{V_0}{2\sqrt{3}} = \frac{V_i}{2^n \cdot 2\sqrt{3}} = \frac{V_i}{2^{n+1} \cdot \sqrt{3}}$$

$$N = \frac{dP_N}{df} \qquad N(V_i) = \frac{\sigma_{Q_1}^2}{f} = \frac{V_i^2}{3 \cdot 2^{2(n+1)} \cdot f} \qquad S/N = \frac{P(V_i)}{N(V_i)} = f \cdot 3 \cdot 2^{2(n+1)}$$

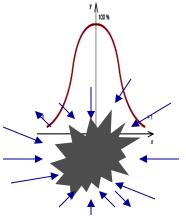
$$S/N = \frac{P(V_i)}{N(V_i)} = f \cdot 3 \cdot 2^{2(n+1)}$$

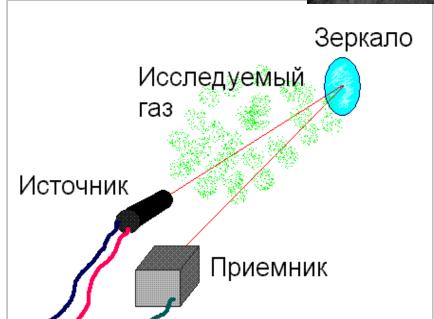

Распределение Гаусса



$$\rho(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}$$




Нормальное распределение - ЦПТ Ляпунова А.М.

- •Стационарность
- •Независимость
- $\cdot N \rightarrow \infty$
- $\cdot \delta x \rightarrow 0$

Максимальность энтропии

$$W = \frac{\xi x^2}{2}$$

$$P(W) \propto \exp(-\frac{W}{kT}) = \exp(-\frac{\xi x^2}{2kT})$$

Заданное отклонение

$$P(a,b) = \int_{-\infty}^{\infty} \rho(x)dx$$

$$|x-\mu| < \delta \qquad -\delta < x - \mu < \delta \qquad \mu - \delta < x < \mu + \delta$$

$$P(\mu-\delta < x < \mu+\delta) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\mu-\delta}^{\mu+\delta} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

$$z = \frac{x-\mu}{\sigma}$$

$$P_{\delta} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\delta/\sigma}^{+\delta/\sigma} \exp(-\frac{z^2}{2}) \, \sigma dz = \frac{1}{\sqrt{2\pi}} \int_{-q}^{+q} e^{-\frac{z^2}{2}} \, dz = \frac{2}{\sqrt{2\pi}} \int_{0}^{q} e^{-\frac{z^2}{2}} \, dz \equiv 2\Phi(\delta/\sigma)$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{z^2}{2}} \, dz \qquad \Phi$$
ункция Лапласа

 $x = \alpha$ $z = \frac{\alpha - \mu}{\alpha}$

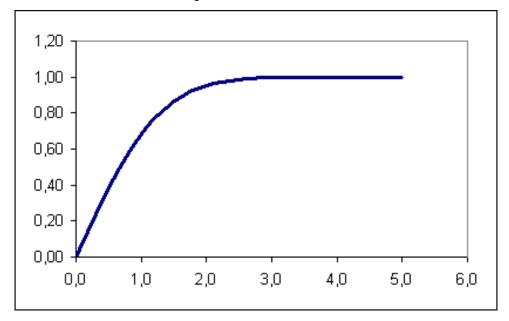
 $x = \beta$ $z = \frac{\beta - \mu}{}$

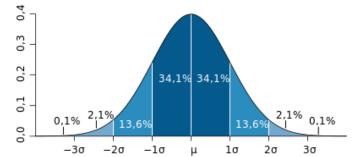
Заданный интервал

 $P(\alpha < x < \beta) = \int_{\alpha}^{\mu} \rho(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\mu} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$

		. (4)
	0,0	0,0000
	0,5	0,1915
	1,0	0,3413
	1,5	0,4332
	2,0	0,4772
Y — 11	2,5	0,4938
$=\frac{x-\mu}{}$	3,0	0,49865
σ	4 0	0 499968

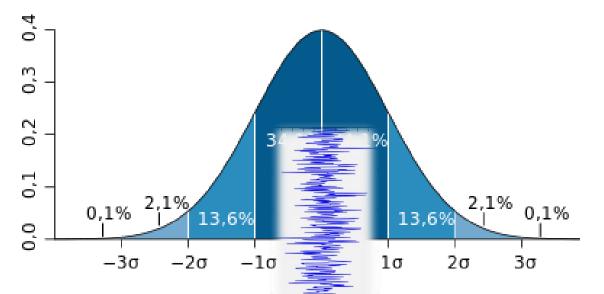
$$P(\alpha < x < \beta) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\alpha-\mu/\sigma}^{\beta-\mu/\sigma} e^{-\frac{z^{2}}{2}} (\sigma dz) = \frac{1}{\sqrt{2\pi}} \int_{\alpha-\mu/\sigma}^{0} e^{-\frac{z^{2}}{2}} dz + \frac{1}{\sqrt{2\pi}} \int_{0}^{\beta-\mu/\sigma} e^{-\frac{z^{2}}{2}} dz = \frac{1}{\sqrt{2\pi}} \int_{0}^{\beta-\mu/\sigma} e^{-\frac{z^{2}}{2}} dz - \frac{1}{\sqrt{2\pi}} \int_{0}^{\alpha-\mu/\sigma} e^{-\frac{z^{2}}{2}} dz = \Phi(\frac{\beta-\mu}{\sigma}) - \Phi(\frac{\alpha-\mu}{\sigma})$$


$$\mu = 30$$
 $\sigma = 10$ $P(10 < x < 50)$
 $2\Phi(2) = 2 \cdot 0,4772 = 0,9544$


Функция ошибок

$$erf(q) = \frac{1}{\sqrt{2\pi}} \int_{-q}^{+q} e^{-\frac{z^2}{2}} dz = 2\Phi(q) = \frac{2}{\sqrt{2\pi}} \int_{0}^{q} e^{-\frac{z^2}{2}} dz$$

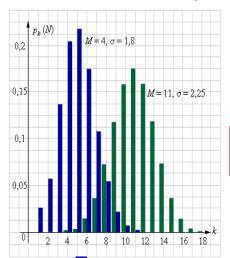
q	erf(<i>q</i>)
0,0	0,0000
0,5	0,3830
1,0	0,6826
1,5	0,8664
2,0	0,9544
2,5	0,9876
3,0	0,9973
4,0	0,99994
5,0	0,999994



Правило «Зо» !!!

Достоверность обнаружения сигнала

σ	Erf (σ)
0	0
0,5	0,3830
1,0	0,6826
1,5	0,8664
2,0	0,9544
3,0	0,9973
4,0	0,9999


Правило «Зо»

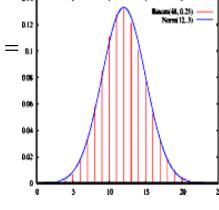
Распределения

Пуассона← биномиальное → Гаусса

Биномиальное распределение

$$P_{N}(k) = C_{N}^{k} p^{k} q^{N-k} C_{N}^{k} = \frac{N!}{k!(N-k)!}$$
 $K = Np$

$$\sigma^{2} = Npq$$


$$\bar{k} = Np$$
$$\sigma^2 = Npq$$

$$N \rightarrow \infty$$
 , p = const

$$P(k) = \frac{1}{\sqrt{2\pi Npq}} \exp\left[-\frac{(k - Np)^{2}}{2Npq}\right] = \frac{1}{100}$$

$$=\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(k-\bar{k})^2}{2\sigma^2}\right]$$

0.4

0.3

•
$$\lambda = 1$$

• $\lambda = 4$

• $\lambda = 10$

0.1

0.0

0.1

15

20

$$P(k) = \frac{N^k}{k!} p^k e^{-Np} = \frac{\lambda^k}{k!} e^{-\lambda} \qquad \overline{k} = Np = \lambda$$

$$\sigma^2 = \lambda$$

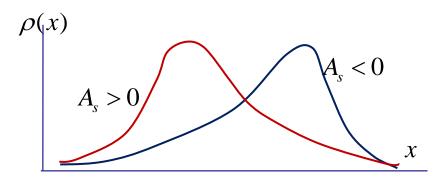
$$ar{k} = Np = \lambda$$
 $oldsymbol{\sigma}^2 = \lambda$

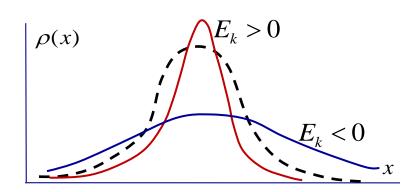
Негауссовы распределения

Центральный момент порядка $k m_{k} = M[(x - M(x))^{k}]$

$$m_k = M[(x - M(x))^k]$$

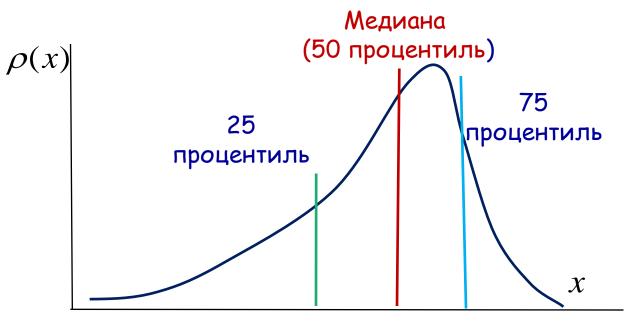
$$m_1 = M[x - M(x)] = \overline{(x - \overline{x})} = 0$$

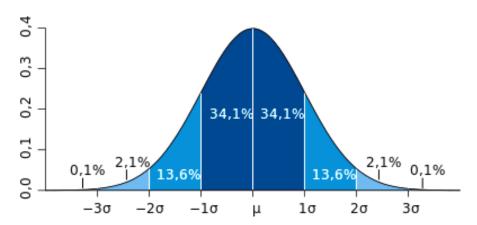

$$m_2 = M[(x - M(x))^2] = (x - \overline{x})^2 = D(x)$$


$$m_3 = M[(x - M(x))^3] = (x - \overline{x})^3$$

$$m_4 = M[(x - M(x))^4] = (x - \overline{x})^4$$

Асимметрия $A_s = \frac{m_3}{-3}$


Эксцесс $E_k = (\frac{m_4}{\sigma^4}) - 3$


Негауссовы распределения

Нормальное распределение

Отклонения Процентили от среднего

проценным	OI OPOCHI
2,5	$\mu - 2\sigma$
16	$\mu - \sigma$
50	h
84	μ+σ
97,5	$\mu + 2\sigma$

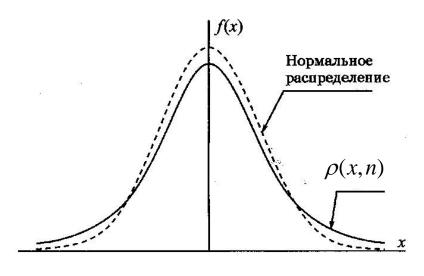
Распределение Стьюдента (t-распределение)

t-распределение, степеней свободы k = n-1

$$t_k = \frac{u}{\sqrt{\chi_k^2 / k}}$$

$$\rho(t,n) = \frac{\Gamma(\frac{n}{2})}{\sqrt{\pi(n-1)}\Gamma(\frac{n-1}{2})} \cdot \left[1 + \frac{t^2}{n-1}\right]^{-\frac{n}{2}}$$

$$\Gamma(x) = \int_{0}^{\infty} x^{x-1} \cdot e^{-t} dt$$


$$\Gamma(n+1) = n!$$

$$t_{m} = 0$$

$$M(t) = 0$$

$$m_{2n+1} = \overline{(t - \overline{t})^{2n+1}} = 0$$

$$D(t) = \frac{k}{k - 2}$$

 $n \to \infty$ Стьюдент → Гаусс

Интервальные оценки

Доверительный интервал для оценки μ нормального распределения при неизвестном σ

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

t-распределение, степеней свободы k = n-1

Таблица значений
$$t_{\gamma} = t \, (\gamma, n)$$

$P(\left \frac{\overline{X} - \mu}{S/\sqrt{n}}\right < t_{\gamma}) = 2\int_{0}^{t_{\gamma}} \rho(t, n)dt = \gamma$	
---	--

$$P(\overline{X} - t_{\gamma} S / \sqrt{n} < \mu < \overline{X} + t_{\gamma} S / \sqrt{n}) = \gamma$$

$$\mu \in (\overline{X} - t_{\gamma} S / \sqrt{n} \,,\,\, \overline{X} + t_{\gamma} S / \sqrt{n})$$
 с надежностью γ

	Y			γ			
n	0,95 0,99 0,999 "	"	0,95	0,99	0,999		
5 6 7	2,78	4,60	8,61	20	2,093	2,861	3,883
6	2,57	4,03	6,86	25	2,064	2,797	3,745
7	2,45	3,71	5,96	30	2,045	2,756	3,659
8	2,37	3,50	5,41	35	2,032	2,720	3,600
9	2,31	3,36	5,04	40	2,023	2,708	3,558
10	2,26	3,25	4,78	45	2,016	2,692	3,527
11	2,23	3,17	4,59	50	2,009	2,679	3,502
12	2,20	3,11	4,44	60	2.001	2,662	3,464
13	2,18	3,06	4,32	70	1,996	2,649	3,439
14	2,16	3,01	4,22	80	1,001	2,640	3,418
15	2,15	2,98	4,14	90	1,987	2,633	3,403
16	2,13	2,95	4,07	100	1,984	2,627	3,392
17	2,12	2,92	4,02	120	1,980	2,617	3,374
18	2,13	2,90	3,97	∞	1,960	2,576	3,291
19	2,10	2,88	3,92			\$ \$200 1	

Статистическая проверка статистических гипотез

- 1.Вид предполагаемого распределения
- 2.Предполагаемая величина параметра распределения и др.

Нулевая (основная) гипотеза H_0 : $\mu = 10$

Конкурирующая (альтернативная) гипотеза $H_1 \ H_1: \ \mu \neq 10$

Ошибка 1 рода: отвергнута правильная гипотеза P(O1) = lpha

Ошибка 2 рода: принята неправильная гипотеза α - уровень значимости

Статистический критерий – специально подобранная случайная величина, распределение которой известно и которая служит для проверки нулевой гипотезы. Распределения: норм, F, t, χ 2......

Распределение F Фишера-Снедекора

$$F = \frac{U/k_1}{V/k_2}$$

$$\rho(x) \subset (0,\infty)$$

$$\rho(x) = \frac{\Gamma(\frac{k_1 + k_2}{2})k_1^{k_1/2}k_2^{k_2/2}}{\Gamma(\frac{k_1}{2})\Gamma(\frac{k_2}{2})} \cdot \frac{x^{(k_1 - 2)/2}}{(k_2 + k_1 x)^{(k_1 + k_2)/2}}$$

$$\Gamma(x) = \int_{0}^{\infty} x^{x-1} \cdot e^{-t} dt$$

$$\Gamma(n+1) = n!$$

$$A_{\rm s} > 0$$

$$A_s > 0$$
 1) $k_1 = k_2 = 2$

2)
$$k_1 = 4$$
 $k_2 = 10$

3)
$$k_1 = k_2 = 10$$

$$x_m = \frac{(k_1 - 2)k_2}{(k_2 + 2)k_1}$$

Распределение F Фишера-Снедекора

Критические точки распределения Г Фишера — Сиедекора

 $(k_1$ — число степеней свободы большей дисперсии, k_2 — число степеней свободы меньшей дисперсии)

Сравнение двух дисперсий нормальных генеральных совокупностей

$$X Y H_0: D(X) = D(Y)$$
 $n_x n_y M[s_X^2] = D(X), M[s_Y^2] = D(Y)$
 $s_X^2 s_Y^2 H_0: M[s_X^2] = M[s_Y^2]$

$$F = \frac{s_B^2}{s_B^2}$$
 критерий

$$k_1 = n_1 - 1 \ (B)$$
 $k_2 = n_2 - 1 \ (M)$

$$H_0: D(X) = D(Y)$$

$$H_1: D(X) > D(Y)$$

При F_{набл} < F крит принимаем H₀

$$P[F > F_{\kappa pum}(\alpha; k_1, k_2)] = \alpha$$

			Уроге	ень зи	ачимос	ти с.	≈0,01				
k ₁											
1	2	3	4	5	6	7	8	9	10	11	12
				•				İ		[[
4052	4999	5403	5625	5764	5889	5928	5981	6022	6056	6082	6106
98,49	99,01	99,17	99,25	99,30	99,33	99,34	99,36	99,38	99,40	99,41	99,42
34,12	30,81	29,46	28,71	28,24	27,91	27,67	27,49	27,34	27,23	27,13	27,05
21,20	18,00	16,69	15.98	15,52	15,21	14,98	14,80	14,66	14,54	14,45	14,37
[16,26]	13,27	12,06	11,39	10,97	10,67	10,45	10,27			9,96	9,89
			9,15	8,75		8,26	8,10	7,98	7,87		
				7,46	7,19	7,00	6,84	6,71	6,62	6,54	6,47
	8,65	7,59	7,01	6,63	6,37	6,19	6,03	5,91	5,82	5,74	5,67
	8,02	6,99		6.06	5,80	5,62					
	7,56	6,55	5,99	5,64	5,39	5,21	5.06				
		6,22	5,67	5,32		4,88	4,74				
	6,93	5,95				4,65	4,50	4,39	4.30		
9,07	-6,70	5,74	5,20	4,86			4.30	4,19		4.02	3,96
8,86	6,51	5,56		4,69							
8,68	6,36	5,42	4,89	4,56							
8,53	6,23		4,77	4,44			3,89		3,69	3,61	
8,40	6.11	5.18	4,67	4,34					3,59		
	98,49 34,12 21,20 16,26 13,74 12,25 11,26 10,56 10,04 9,33 9,07 8,86 8,68 8,53	4052 4999 98,49 99,01 34,12 30,81 21,20 18,00 16,26 13,27 13,74 10,92 12,25 9.55 11,26 8,65 10,56 8,02 10,56 7,20 9,33 6,93 9,36 6,70 8,86 6,51 8,68 6,36 8,53 6,23	4052 4999 5403 98,49 99,01 99,17 34,12 30,81 29,46 21,20 18,00 16,69 16,26 13,27 12,06 13,74 10,92 9,78 12,25 9,55 8,45 11,26 8,65 7,59 10,56 8,02 6,99 10,04 7,56 6,55 9,86 7,20 6,22 9,33 6,93 5,95 9,07 6,70 5,74 8,86 6,51 5,56 8,68 6,36 5,42 8,53 6,23 5,29	1 2 3 4 4052 4999 5403 5625 98,49 99,01 99,17 99,25 34,12 30,81 29,46 28,71 21,20 18,00 16,69 15,98 16,26 13,27 12,06 11,39 13,74 10,92 9,78 9,15 12,25 9,55 8,45 7,85 11,26 8,65 7,59 7,01 10,56 8,02 6,99 6,42 10,04 7,56 6,55 5,99 9,86 7,20 6,22 5,67 9,33 6,93 5,95 5,41 9,67 6,70 5,74 5,20 8,86 6,51 5,56 5,03 8,68 6,36 5,42 4,89 8,53 6,23 5,29 4,77	1 2 3 4 5 4052 4999 5403 5625 5764 98,49 99,01 99,17 99,25 99,30 34,12 30,81 29,46 28,71 28,24 21,20 18,00 16,69 15,98 15,52 16,26 13,27 12,06 11,39 10,97 13,74 10,92 9,78 9,15 8,75 12,25 9,55 8,45 7,85 7,46 11,26 8,65 7,59 7,01 6,63 10,56 8,02 6,99 6,42 6,06 10,04 7,56 6,55 5,99 5,64 9,86 7,26 6,22 5,67 5,32 9,33 6,93 5,95 5,41 5,06 9,07 6,70 5,74 5,20 4,86 8,86 6,51 5,56 5,03 4,69 8,68 6,36 5,42 4,89 4,56 8,53 6,23 5,29 4,77 4,44	1 2 3 4 5 6 4052 4999 5403 5625 5764 5889 98,49 99,01 99,17 99,25 99,30 99,33 34,12 30,81 29,46 28,71 28,24 27,91 21,20 18,00 16,69 15,98 15,52 15,21 16,26 13,27 12,06 11,39 10,97 10,67 13,74 10,92 9,78 9,15 8,75 7,46 7,19 12,25 9,55 8,45 7,85 7,46 7,19 11,26 8,65 7,59 7,01 6,63 6,37 10,56 8,02 6,99 6,42 6,06 5,80 10,04 7,56 6,55 5,99 5,64 5,39 9,86 7,26 6,22 5,67 5,32 5,07 9,33 6,93 5,95 5,41 5,06 4,82 9,67 6,70 5,74 5,20 4,86 4,62 8,86 6,51 5,56 5,03 4,69 4,46 8,68 6,36 5,42 4,89 4,56 4,32 8,53 6,23 5,29 4,77 4,44 4,20	1 2 3 4 5 6 7	1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10 11 4052 4999 5403 5625 5764 5889 5928 5981 6022 6056 6082 98,49 99,01 99,17 99,25 99,30 99,33 99,34 99,36 99,38 99,40 99,41 34,12 30,81 29,46 28,71 28,24 27,91 27,67 27,49 27,34 27,23 27,13 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,66 14,54 14,45 16,26 13,27 12,06 11,39 10,97 10,67 10,45 10,27 10,15 10,05 9,96 13,74 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7,87 7,79 12,25 9,55 8,45 7,85 7,46 7,19 7,00 6,84 6,71 6,62 6,54 11,26 8,65 7,59 7,01 6,63 6,37 6,19 6,03 5,91 5,82 5,74 10,56 8,02 6,99 6,42 6,06 5,80 5,62 5,47 5,35 5,26 5,18 10,04 7,56 6,55 5,99 5,64 5,39 5,21 5,06 4,95 4,85 4,78 9,86 7,26 6,22 5,67 5,32 5,07 4,88 4,74 4,63 4,54 4,46 9,33 6,93 5,95 5,41 5,06 4,82 4,65 4,50 4,39 4,30 4,22 9,07 6,70 5,74 5,20 4,86 4,62 4,44 4,30 4,19 4,10 4,02 8,86 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 3,80 3,73 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 3,69 3,61

			···-	A 003	ФИЬ 38 ~————	омиры	тн ж=	≈U,05				
٤.	İ					A	t					
k ₂	ī	2	3	4	5	6	7	8	9	10	11	12
1	161	200	216	225	230	234	237	239	24!	242	243	244
2	18,51	19,00	19,16	19,25	19,30		19,36		19,38		19,40	
3 -	10,13		- ,			8,94				8,78		
ą.	7,71	6,94	6,59	6,39					6,00			
$\frac{5}{6}$	6,61	5,79		5,19					4,78			
7	5,99	5,14					4,21	4,15				
ا ن	5,59	4,74					3,79	3,73	3,68			
8 9	5,32 5,12	4,4 6	4,07	3,84			3,50		3,39	3,34		3,2
10	4,96	4.26	3,86		3,48		3,29		3,18	3,13		
11	4.84	$\frac{4,10}{3,98}$	3,59	3,48	3,33		3,14	3,07	3.02			
12	4,75	3,88	3,49	$\frac{3,36}{3,26}$	3,20	3,09 3.00	3,01	2,95	2,90			
$\tilde{13}$	4,67	3,80		3,18			2,92					
14	4,60	3.74		3,11	2,96		2,84	$\frac{2,77}{2,70}$	2,72	2,67	2,63	
13	4,54	3,68		3,06	2,90	$\frac{2,69}{2,79}$	$\frac{2,77}{2,70}$	2,70	2,65		2,56	
61	4,49	3,63	3,24	3,00	2,85	2.74	$\frac{2.70}{2,66}$		2,59 2,54			
17	4.45	3,59	3,20	2,96	2,81	2,70	2,62	2.59		2,49 2,45	2,45 2,41	2,4 2,3

Распределение хи-квадрат

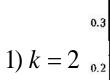
$$\chi^2 = \sum_{i=1}^n X_i^2$$

$$\rho(x) \subset (0,\infty)$$

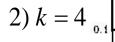
$$\rho(x) = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} e^{-x/2} \cdot x^{(k/2)-1}$$

$$k = n - 1 \qquad (\sum X_i - n\overline{X})$$

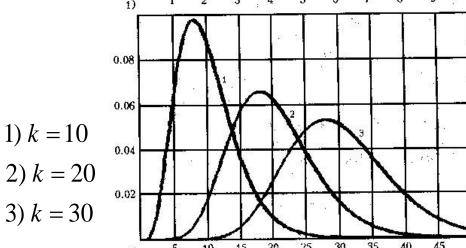
$$\Gamma(x) = \int_{0}^{\infty} x^{x-1} \cdot e^{-t} dt$$


$$\Gamma(n+1) = n!$$

$$\sqrt{\chi^2} = \sqrt{X_1^2 + X_2^2 + X_3^2}$$
 2) $k = 20$


Максвелл

$$\rho(x) = \sqrt{\frac{2}{\pi}} \frac{x^2}{\sigma^3} e^{-x^2/2\sigma^2}$$


$$x_m = \sqrt{2}\sigma$$
3) $k = 30$

M(x) = n

D(x) = 2n

3)
$$k = 30$$

$$k \to \infty$$
 $\frac{\chi^2 - k}{\sqrt{2k}} \to \Gamma aycc$

Распределение хи-квадрат

Сравнение выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности

Критические точки распределения х²

•	•	•
$\sigma_0^2;$	$n \rightarrow s^2$	(k=n-1)
H_0 :	$M(s^2) =$	$=\sigma_0^2$
$\chi^2 =$	$=\frac{(n-1)s^2}{\sigma_0^2}$	критерий

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 > \sigma_0^2$$

$$P[\chi^2 > \chi^2_{\kappa pum}(\alpha; k)]$$

$$H_0: \chi^2 < \chi^2_{\kappa pum}$$

число	Уронень значимости а									
епеней	0,01	0,025	0,05	0,95	0,975	0,89				
1	6,6	5,0	3,8	0,0039	0,00098	0,00016				
2	9,2	7,4	6,0	0,103	0,051	0,020				
3	11,3	9,4	7,8	0,352	0,216	0,115				
4	13,3	11,1	9,5	0,711	0,484	0,297				
5	15,1	12,8	11,1	1,15	0,831	0,554				
6	16,8	14,4	12,6	1,64	1,24	0,872				
5 6 7	18,5	16,0	14,1	2,17	1,69	1,24				
8	20,1	17,5	15,5	2,73	2,18	1,65				
9	21,7	19,0	16,9	3,33	2,70	2,09				
10	23,2	20,5	18,3	3,94	3,25	2,56				
11	24,7	21,9	19,7	4,57	3,82	3,05				
12	26,2	23,3	21,0	5,23	4,40	3,57				
13	27,7	24,7	22,4	5,89	5,01	4,11				
14	29,1	26,1	23,7	6,57	5,63	4,66				
15	30,6	27,5	25,0	7,26	6,26	5,23				
16	32,0	28,8	26,3	7,96	6,91	5,81				
17	33,4	30,2	27,6	8,67	7,56	6,41				
18	34,8	31,5	28,9	9,39	8,23	7,01				
19	36,2	32,9	30,1	10,1	8,91	7,63				
20	37,6	34,2	31,4	10,9	9,59	8,26				
21	38,9	35,5	32,7	11,6	10,3	8,90				
22	40,3	36,8	33,9	12,3	11,0	9,54				
23	41,6	38,1	35,2	13,1	11,7	10,2				
24	43,0	39,4	36,4	13,8	12,4	10,9				
25	44,3	40,6	37,7	14,6	13,1	11,5				
26	45,6	41,9	38,9	15,4	13,8	12,2				
27	47,0	43,2	40,1	16,2	14,6	12,9				
28	48,3	44,5	41,3	16,9	15,3	13,6				
29	49,6	45,7	42,6	17,7	16,0	14,3				
30	50,9	47.0	43,8	18,5	16,8	15,0				

Дисперсионный анализ

H₀: фактор F не влияет на признак X

Номер	Уровни фактора F _j							
испытания	F ₁	F ₂		F _p				
1	X ₁₁	X ₁₂	•••	X _{1p}				
2	X ₂₁	X ₂₂		X _{2p}				
q	X _{q1}	X _{q2}		X _{qp}				
Групповая средняя	<u>X</u> 1	<u>X</u> ₂	•••	<u>X</u> _p				
Дисперсия внутригруп	S ² ₁	S ² ₂	•••	S ² _p				

$$s_{\mathit{внутригруп}}^2 = \overline{s_{\mathit{групn}}^2} = \frac{1}{p}(s_1^2 + s_2^2 + \ldots + s_p^2)$$
 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \to \sigma^2 = n\sigma_{\bar{x}}^2$ $F = \frac{\sigma_{\mathit{межгруn}}^2}{\sigma_{\mathit{внутригруn}}^2}$

Дисперсионный анализ

Номер	Уро	вни факто	pa F _i
испытания	F ₁	F ₂	F ₃
1	-1	0	-10
2	0	2	-8
3	4	4	-2
4	5	6	0
Групповая средняя	2.0	3.0	-5.0
Ср.квадр. отклонение			
S	2,94	2,58	4,76

$$\overline{X} = \frac{1}{3} (\overline{X}_1 + \overline{X}_2 + \overline{X}_3) = (2.0 + 3.0 - 5.0)/3 = 0$$

$$s_{\overline{X}} = \sqrt{\frac{(\overline{X}_1 - \overline{X})^2 + (\overline{X}_2 - \overline{X})^2 + (\overline{X}_3 - \overline{X})^2}{p - 1}} = \sqrt{\frac{(2 - 0)^2 + (3 - 0)^2 + (-5 - 0)^2}{2}} = 4.36$$

 $s_{\text{внутригруп}}^2 = \frac{1}{3}(2,94^2 + 2,58^2 + 4,76^2) = 12,7$

$$s_{\text{межгруп}}^2 = q s_{\bar{x}}^2 = 4 \cdot 4.36^2 = 76.00$$
 $F = \frac{\sigma_{\text{межгруп}}^2}{\sigma_{\text{внутригруп}}^2} = \frac{76.0}{12.7} = 5.98$

$$F_{\kappa pum}(\alpha; k_1, k_2) = F(0.05; 2; 9) = 4.26$$

$$k_{\text{межгруп}} = p - 1 = 3 - 1 = 2$$

 $k_{\text{внутригруп}} = p(q - 1) = 3(4 - 1) = 9$

$$F_{{\scriptscriptstyle {\it Ha}}{\delta}{\pi}}\!>\!F_{{\scriptscriptstyle {\it крит}}}\!\Rightarrow\! H_0$$
 отвергаем

Не только Фурье

Интегральные преобразования

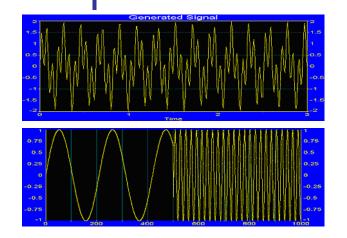
Фурье

$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$

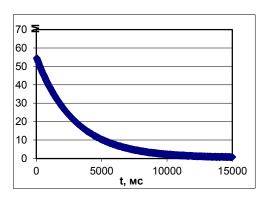
$$f(t) = \frac{1}{2\pi} \int_{0}^{\infty} F(\omega) e^{-i\omega t} d\omega$$

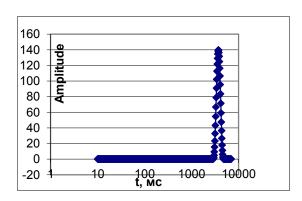
Лапласа

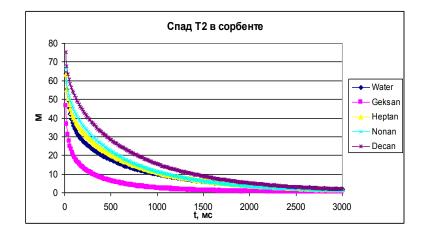
$$F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt$$

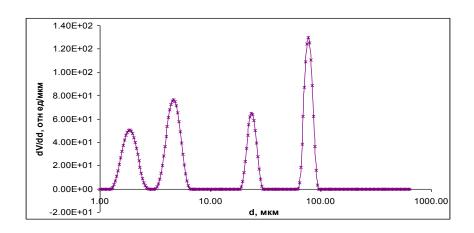

$$f(t) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} F(p)e^{pt} dp$$

Полезные свойства


$$\alpha f(t) + \beta g(t) \Leftrightarrow \alpha F(\omega) + \beta G(\omega) \qquad \alpha f(t) + \beta g(t) \Leftrightarrow \alpha F(p) + \beta G(p)
f^{(n)}(t) \Leftrightarrow (-i\omega)^n F(\omega) \qquad f^{(n)}(t) \Leftrightarrow p^n F(p) - p^{n-1} f'(0) - \dots - f^{(n-1)}(0)
\int_0^\tau f(t) dt \Leftrightarrow \frac{F(p)}{p}
p = a + i\sigma$$




Не только Фурье

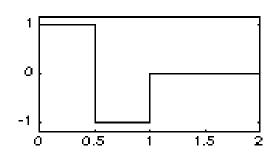


Лаплас

Вейвлет-преобразование

$$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t)\psi^*(\frac{t-b}{a})dt \qquad f(t) = \iint_{0,-\infty} W(a,b)\psi(\frac{t-b}{a})\frac{dadb}{a^2}$$

$$f(t) = \iint_{0,-\infty} W(a,b)\psi(\frac{t-b}{a}) \frac{dadb}{a^2}$$

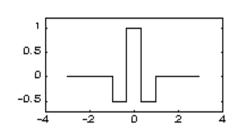

Требования к ψ : локализация, ограниченность

$$\int_{0}^{\infty} \psi(t)dt = 0;$$

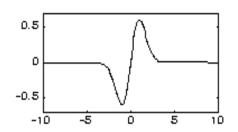
$$\int_{-\infty}^{\infty} \psi(t)dt = 0; \qquad \int_{-\infty}^{\infty} |\psi(t)|^2 dt < \infty$$

HAAR - вейвлет

$$\psi(t) = \begin{cases} 1, & 0 \le t < 1/2 \\ -1, & 1/2 \le t < 1 \\ 0, & t < 0, t \ge 1 \end{cases}$$



Вейвлет-преобразование

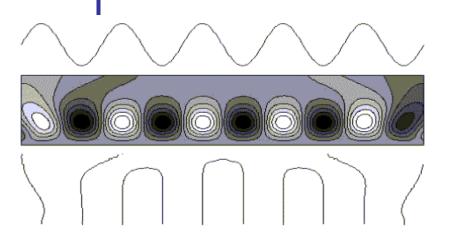

FHAT - вейвлет ("Французская шляпа" - French hat)

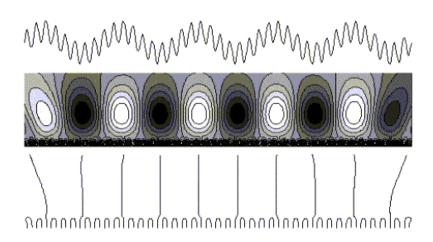
$$\psi(t) = \begin{cases} 1, & |t| \le 1/3 & \text{o.s} \\ -1/2, & 1/3 < |t| \le 1 & \text{o} \\ 0, & |t| > 1 & \text{-o.s} \end{cases}$$

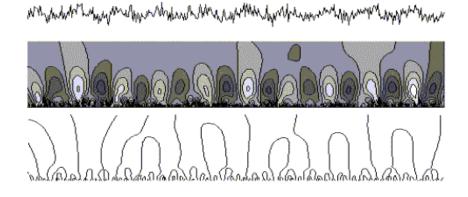
Wave - вейвлет

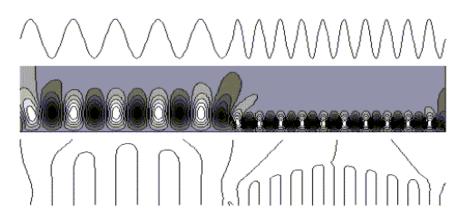
$$\psi(t) = t \exp(-\frac{t^2}{2})$$

MHAT - вейвлет ("Мексиканская шляпа" - Mexican hat)

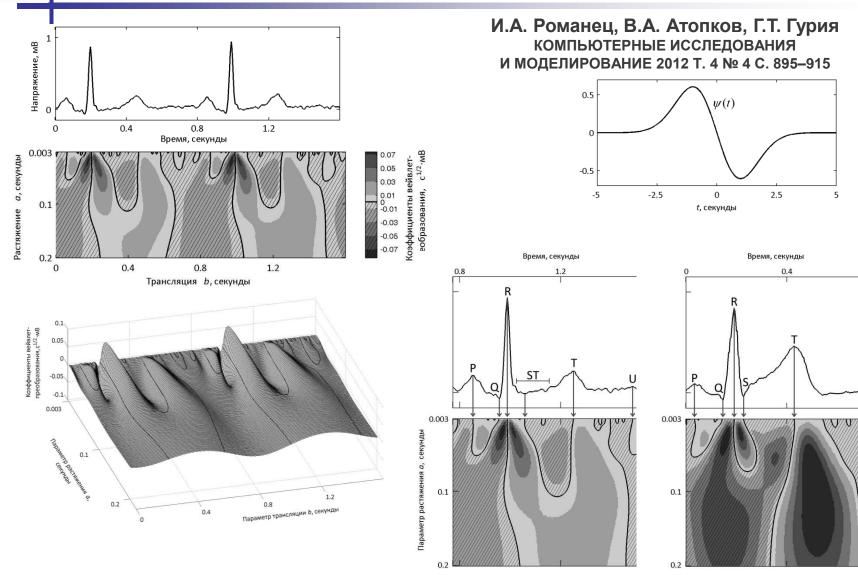

$\psi(t) = (1-t^2) \exp(-\frac{t^2}{2}) \quad \text{o}$

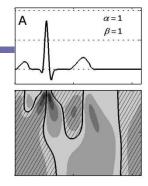

Вейвлет Морле (образует комплексный базис)

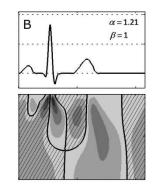

$$\psi(r) = \exp(ik_{\rm b}r - \frac{r^2}{2}) \int_{-1}^{1} \frac{1}{(1-r)^2 - r^2} dr$$

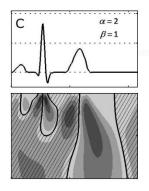


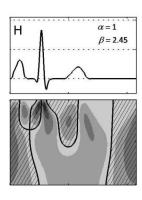
Вейвлет-преобразование

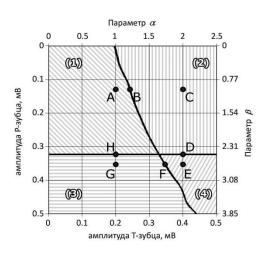


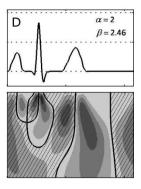

Топологические основы классификации электрокардиограмм

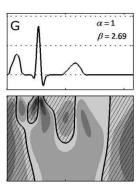


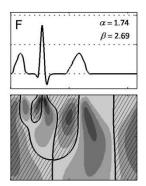


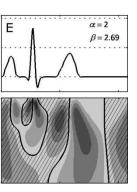

Классификация электрокардиограмм


И.А. Романец, В.А. Атопков, Г.Т. Гурия КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ 2012 Т. 4 № 4 С. 895–915





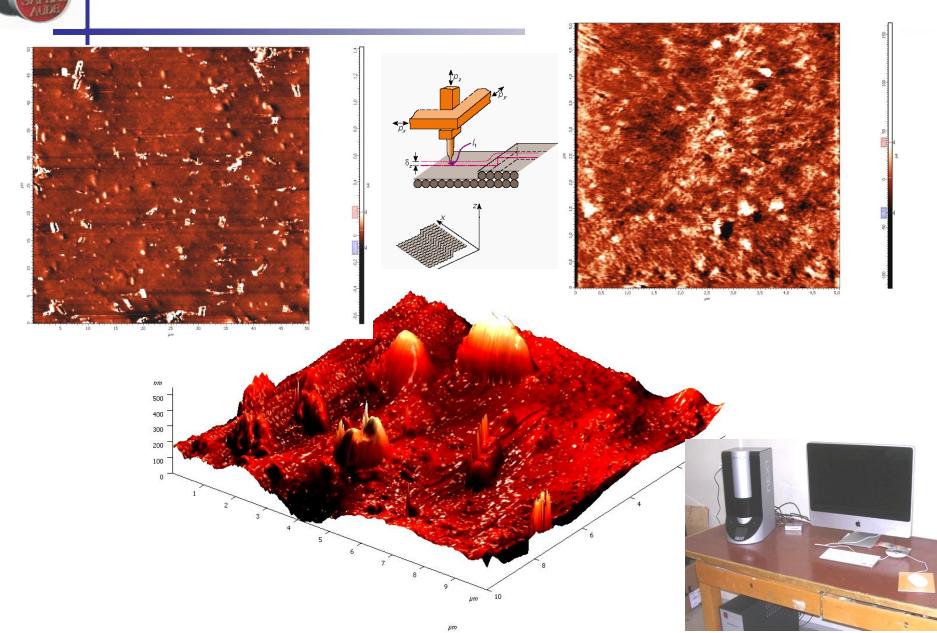




Временные ряды

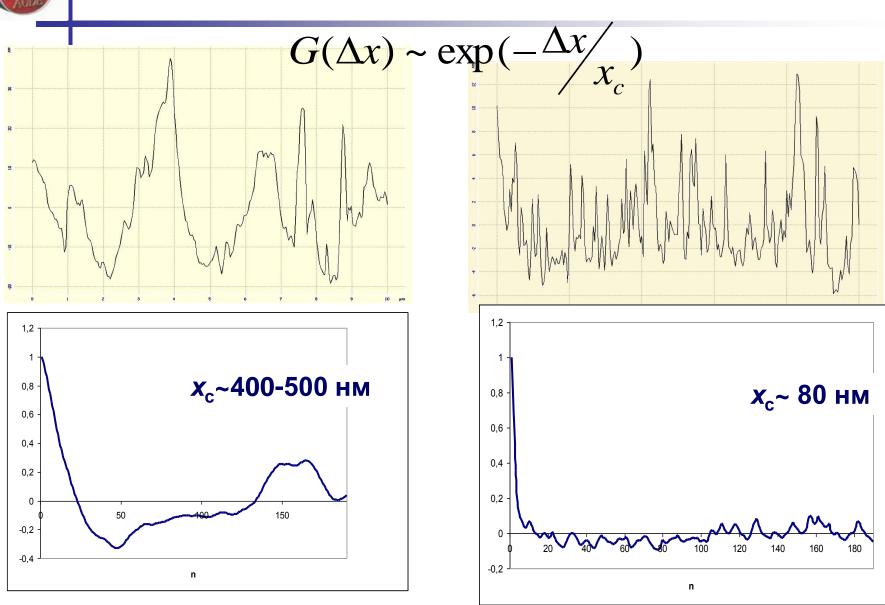
Интегральные преобразования - корреляция с базисной функцией

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt \qquad F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt \qquad W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t)\psi^{*}(\frac{t-b}{a})dt$$


Автокорреляционная функция

$$G(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} R(t+\tau)R(t)dt$$

$$G(\Delta x) = \lim_{L \to \infty} \frac{1}{L} \int_{0}^{L} R(x + \Delta x) R(x) dx$$



Топография поверхности

Автокорреляционная функция

Литература

Максимычев А.В. Физические методы исследования. 1.Погрешности измерений. М., МФТИ , **2006**.

Стариковская С.М. Физические методы исследования. Семинарские занятия. 1.1. Учет погрешностей при обработке результатов измерений: М: МФТИ, 2003

Клаассен К.Б. Основы измерений. Электронные методы и приборы в измерительной технике. М. Постмаркет, **2000**.

Тейлор Дж. Введение в теорию ошибок. М. Мир, **1985**.

Худсон Д. Статистика для физиков. М.Мир, 1970

Гланц С. Медико-биологическая статистика. М. Практика, 1999

Гмурман В.Е. Теория вероятностей и математическая статистика. М. Высшая школа, 2002.