Лекция 2
Магнитная радиоспектроскопия (ЯМР)
Химический сдвиг — тяжелые ядра (13C)

Фуллерит

Фуллерен C_{60}

$\Delta \delta \sim 350$ м.д.

октаэдры

tетраэдры
Химический сдвиг – тяжелые ядра (31P)

$\Delta \delta \sim 500$ м.д.

Плазма крови + тромбоциты
Химический сдвиг – тяжелые ядра (19F)

$\Delta \delta \approx 1000$ м.д.

Nafion
Свойства некоторых ядер, используемых в ЯМР

Диапазоны δ:

<table>
<thead>
<tr>
<th>Изотоп</th>
<th>Спин ядра</th>
<th>g</th>
<th>$\gamma/2\pi$ (MHz/T)</th>
<th>% содержания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1/2</td>
<td>5.585</td>
<td>42.575</td>
<td>99.985</td>
</tr>
<tr>
<td>2H</td>
<td>1</td>
<td>0.857</td>
<td>6.53</td>
<td>0.015</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1/2</td>
<td>1.405</td>
<td>10.71</td>
<td>1.108</td>
</tr>
<tr>
<td>^{14}N</td>
<td>1</td>
<td>0.404</td>
<td>3.078</td>
<td>99.63</td>
</tr>
<tr>
<td>^{15}N</td>
<td>1/2</td>
<td>-0.56</td>
<td>4.32</td>
<td>0.37</td>
</tr>
<tr>
<td>^{17}O</td>
<td>5/2</td>
<td>-0.76</td>
<td>5.77</td>
<td>0.037</td>
</tr>
<tr>
<td>^{19}F</td>
<td>1/2</td>
<td>5.257</td>
<td>40.08</td>
<td>100</td>
</tr>
<tr>
<td>^{23}Na</td>
<td>3/2</td>
<td>1.478</td>
<td>11.27</td>
<td>100</td>
</tr>
<tr>
<td>^{31}P</td>
<td>1/2</td>
<td>2.263</td>
<td>17.25</td>
<td>100</td>
</tr>
</tbody>
</table>

$\Delta\delta(^1H) \propto 10$ м.д.
$\Delta\delta(^{13}C) \propto 350$ м.д.
$\Delta\delta(^{31}P) \propto 500$ м.д.
$\Delta\delta(^{19}F) \propto 1000$ м.д.
Спин-спиновое расщепление

1951 Proctor W.G.
Спин-спиновое расщепление

\[N_m = (2I_A + 1)(2I_B + 1) \cdots \]

Паскаля треугольник - биномиальные коэффициенты

| I=1/2 |
Спин-спиновое расщепление

\[
\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-COOH}
\]
Двойной резонанс

13C-спектр

13C1H-спектр

$\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-COOH}$
Спин-спиновое расщепление

\[N_m = (2I_A + 1)(2I_B + 1) \ldots \]

\(^{13}\text{C}-\text{ЯМР} \)

\(d_6-\text{ДМСО} \)

\(I_D = 1 \)
Константа спин-спинового взаимодействия J_{AB}

Контактный механизм Ферми

1° Расстояние: $^1J_{AB} > ^2J_{AB} > ^3J_{AB} \ldots$

2° Распределение электронной плотности $^1J_{CH}$ (Гц)

(донорно-акцепторные свойства заместителей, гибридизация)

<table>
<thead>
<tr>
<th>Гибридизация</th>
<th>Свободы</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp^3</td>
<td>125</td>
</tr>
<tr>
<td>sp^2</td>
<td>160</td>
</tr>
<tr>
<td>sp</td>
<td>250</td>
</tr>
</tbody>
</table>

3° Конформация (углы между связями)
Однородность поля — шиммы

<table>
<thead>
<tr>
<th>Z1</th>
<th>±13085 ±1000</th>
<th>X1</th>
<th>±2849 ±1000</th>
<th>X3</th>
<th>±1198 ±1</th>
<th>Z3X</th>
<th>±1</th>
<th>Z3X</th>
<th>±3122 ±1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z2</td>
<td>±2438 ±1000</td>
<td>Y1</td>
<td>±4345 ±1000</td>
<td>Y3</td>
<td>±9576 ±1</td>
<td>Y3Y</td>
<td>±1</td>
<td>Z3Y</td>
<td>±6694 ±1</td>
</tr>
<tr>
<td>Z3</td>
<td>±12853 ±1</td>
<td>Z1X</td>
<td>±1000</td>
<td>Z1X</td>
<td>±1000</td>
<td>Z1X2</td>
<td>±1</td>
<td>Z1X2</td>
<td>±1000</td>
</tr>
<tr>
<td>Z4</td>
<td>±8016 ±1</td>
<td>Z1Z</td>
<td>±1000</td>
<td>Z1Z</td>
<td>±1000</td>
<td>Z1Z2</td>
<td>±1</td>
<td>Z1Z2</td>
<td>±1000</td>
</tr>
<tr>
<td>Z5</td>
<td>±17127 ±1</td>
<td>Z1Y</td>
<td>±1000</td>
<td>Z1Y</td>
<td>±1000</td>
<td>Z1Y2</td>
<td>±1</td>
<td>Z1Y2</td>
<td>±1000</td>
</tr>
<tr>
<td>Z6</td>
<td>±2 ±1</td>
<td>Z1Z</td>
<td>±1000</td>
<td>Z1Z</td>
<td>±1000</td>
<td>Z1Z2</td>
<td>±1</td>
<td>Z1Z2</td>
<td>±1000</td>
</tr>
<tr>
<td>Z7</td>
<td>±1</td>
<td>Z1Y</td>
<td>±1000</td>
<td>Z1Y</td>
<td>±1000</td>
<td>Z1Y2</td>
<td>±1</td>
<td>Z1Y2</td>
<td>±1000</td>
</tr>
</tbody>
</table>

Слайд 11
97956.5

Время: 0.0007

Spin On
Spin Off
0 Hz
Recr gain
0

Save Shims
Основные характеристики спектра ЯМР

- Количество сигналов — кол-во неэквивалентных групп ядер
- Площадь сигнала — относительное кол-во ядер в различных группах
- Положение сигнала (δ)- распределение электронной плотности
- Мультиплетность — природа соседних группировок, обмен
- Мультиплетность — константа спин-спинового взаимодействия J
- Ширина линии — времена релаксации, времена обмена
Интенсивность поглощения, релаксация

Мощность поглощения

\[
\frac{dE}{dt} = \frac{N (g\beta_N B_0)^2}{2 \frac{kT}{1+2PT_1}} \varepsilon F
\]

Индуцированные +спонтанные переходы

\[
n = \frac{n_0}{1+2PT_1}
\]

\[
\frac{dE}{dt} = \frac{N (g\beta_N B_0)^2}{2 \frac{kT}{1+2PT_1}} \varepsilon F
\]

\[
T_1 = \begin{cases}
10^{-2} - 10^{2} \text{ сек (жидк)} \\
10^{2} - 10^{4} \text{ с (тверд)}
\end{cases}
\]
Релаксация: T_1

T_1 - флуктуации локального поля: $\forall N(\omega): \omega_0 \in N(\omega)$

10 Анизотропия электронного экранирования

20 Спин-вращательное взаимодействие

30 Скалярное взаимодействие

40 Магнитное диполь-дипольное взаимодействие (парамагнетики!)

50 Квадрупольное взаимодействие

...............
Анизотропия электронного экранирования

\[\sigma^s = \frac{1}{2} \begin{pmatrix} \sigma_{xx} & \frac{1}{2}(\sigma_{xy} + \sigma_{yx}) & \frac{1}{2}(\sigma_{xz} + \sigma_{zx}) \\ \frac{1}{2}(\sigma_{xy} + \sigma_{yx}) & \sigma_{yy} & \frac{1}{2}(\sigma_{yz} + \sigma_{zy}) \\ \frac{1}{2}(\sigma_{xz} + \sigma_{zx}) & \frac{1}{2}(\sigma_{yz} + \sigma_{zy}) & \sigma_{zz} \end{pmatrix} \]

\[\sigma^{as} = \frac{1}{2} \begin{pmatrix} \sigma_{xx} & \frac{1}{2}(\sigma_{xy} - \sigma_{yx}) & \frac{1}{2}(\sigma_{xz} - \sigma_{zx}) \\ \frac{1}{2}(\sigma_{yx} - \sigma_{xy}) & \sigma_{yy} & \frac{1}{2}(\sigma_{yz} - \sigma_{zy}) \\ \frac{1}{2}(\sigma_{zx} - \sigma_{xz}) & \frac{1}{2}(\sigma_{zy} - \sigma_{yz}) & \sigma_{zz} \end{pmatrix} \]

Жидкость

\[\sigma = 1/3(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) \]
Прямое диполь-дипольное взаимодействие

\[B_{\text{лок}} = \frac{\mu}{r^3} f(\beta) \]

\[E = \frac{\mu_1\mu_2}{r^3} - \frac{3(\mu_1 r)(\mu_2 r)}{r^5} \]
Прецессия Лармора

Ширина линии, классическое описание ЯМР

\[
M = \sum_{i}^{N} \mu_i
\]

\[
M = \chi B_0
\]

\[
T = [\mu \times B_0]
\]

\[
\frac{dL}{dt} = T
\]

\[
\frac{d\mu}{dt} = \gamma [\mu \times B_0]
\]

\[
\omega_0 = \gamma \times B_0
\]
Макроскопическая равновесная намагниченность

\[B_0 \]

\[m_I = +\frac{1}{2} \quad (\alpha\text{-state}) \]

\[m_I = -\frac{1}{2} \quad (\beta\text{-state}) \]

\[M_0 = N \frac{\gamma^2 h^2 I (I + 1)}{3(4\pi^2)kT} B_0 \]
Релаксация: T_1 и T_2

Уравнение Блоха:

равновесие

равновесия нет

$$\frac{d}{dt} M = \gamma M \times B$$

$$\frac{d}{dt} M = \gamma M \times B - R(M - M_0)$$

$$R = \begin{pmatrix}
\frac{1}{T_2} & 0 & 0 \\
0 & \frac{1}{T_2} & 0 \\
0 & 0 & \frac{1}{T_1}
\end{pmatrix}$$

$$\frac{dM}{dt} = \gamma [M, B] - i \frac{M_x}{T_2} - j \frac{M_y}{T_2} - k \frac{M_z}{T_1} - M_0$$
Ширина линии

\[g(\omega) = \frac{T_2}{\pi} \cdot \frac{1}{1 + T_2^2 (\omega - \omega_0)^2} \]

\[\Delta \nu_{1/2} = \frac{1}{\pi T_2} \]
Релаксация: T_1 и T_2

$$\frac{1}{T_2} = \frac{1}{T_1} + \frac{1}{T_2^*}$$

$$g(\omega) = \frac{T_2}{\pi} \cdot \frac{1}{1+T_2^2(\omega-\omega_0)^2}$$

$$\int_0^\infty g(\omega) d\omega = 1$$

$$T_2 = 10^{-4} - 10^4 \text{ с}$$

$T_1 = \begin{cases}
10^{-2} - 10^2 \text{ (жидк)} \\
10^2 - 10^4 \text{ (тв)}
\end{cases}$

$$\frac{1}{T_2^*}$$

γ — магнитная константа

$\delta B_0 = \frac{1}{\pi T_2^*}$

Неоднородность B_0

Окружение

Аппаратные условия
Релаксация и время корреляции

\[B = B_0 + B(t) \]

\[R_1 = \frac{1}{T_1} = \gamma^2 B^2(t) \cdot \frac{2\tau_c}{1 + \omega_0^2 \tau_c^2} \]

\[R_2 = \frac{1}{T_2} = \gamma^2 B^2(t) \cdot \left[\tau_c + \frac{\tau_c}{1 + \omega_0^2 \tau_c^2} \right] \]

\[T_2 = T_1 \]

\[\omega_0 \tau_c \ll 1 \]

\[\omega_0 \tau_c \gg 1 \]

\[\frac{1}{T_2} = \frac{1}{T_1} + \frac{1}{T_2^*} \]
Время корреляции

\[B = B_0 + B(t) \]

Случайная функция

Автокорреляционная функция

\[C(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T B(t + \tau)B(t)dt \]

\[C(\tau) \sim \exp\left(-\frac{\tau}{\tau_c}\right) \]
Ширина линии

1. Релаксационные процессы

2. Обменные процессы
Ширина линии

Обменные процессы

\[
\begin{align*}
\text{Me} & \quad \text{N} - \text{N} = \text{O} \\
\text{Me} & \quad \text{N} - \text{N} = \text{O} \\
\text{H} & \quad \text{O} \quad \text{H} - \text{OC}_2\text{H}_5 \\
\text{H} & \quad \text{O} \quad \text{H} - \text{OC}_2\text{H}_5
\end{align*}
\]
Обменные процессы

Видно несколько графиков с различными метками и значениями.

Если необходимо, вы можете запросить более подробное пояснение.
Скорость обмена

\[\delta \nu = \frac{k}{\pi \tau} = \frac{1}{\pi \tau} \]

\[\delta \nu \sim \Delta \nu_{AB}; \quad \frac{1}{\pi \tau} \sim \Delta \nu_{AB}; \quad k \sim \pi \Delta \nu_{AB} \]

\[\delta \nu = \frac{\pi (\Delta \nu_{AB})^2}{k} = \pi (\Delta \nu_{AB})^2 \tau \]
«Обменные процессы»: двойной резонанс

\[
\begin{array}{c}
\text{C - H} \\
\text{H}_\alpha \quad \text{H}_\beta
\end{array}
\]

\[
\text{13C}
\]

\[
\text{13C}\{1\text{H}\}
\]

\[
h\nu
\]
Ширина линии

C_6H_{14}

- **Ширина линии**
 - 17 Гц

H_2O

- **Ширина линии**
 - 8 Гц

Ширина линии C_6H_{14} составляет 17 Гц.

Ширина линии H_2O составляет 8 Гц.

Гц, м.д.
Механизм уширения:

dипольные взаимодействия + пространственная неоднородность

$$M = \Delta \chi B_0$$

$$B' = \frac{3\hat{r}(\hat{r} \mu) - \mu}{r^3}$$

$$B_{лок} = B_0 + B'$$

$$\delta V \sim \frac{\gamma}{2\pi} B'$$
Диффузионное сужение линии

\[\delta v = \frac{1}{\pi T_2} + 4\pi (\Delta v)^2 \tau_{\text{диф}} \]

\[\tau_{\text{диф}} \sim \frac{d^2}{D} \sim 10^{-8} \text{ сек} \]

\[\tau_{\text{спектр}} \sim \frac{1}{2\pi \Delta v} \sim 10^{-5} \text{ сек} \]

Мутина А.Р. Диссертация....к.ф.-м.н, Казань.2007

40 А°
Принципы ЯМР-спектроскопии

\[\Delta \omega \Delta t \sim 1 \]
Как вывести спиновую систему из равновесия? Импульсный ЯМР.

$$\vec{\omega}_0 = \gamma \vec{B}_0$$

$$\omega_{BCK}^1 = \omega_0 - \omega$$

$$\gamma B_{BCK}^1 = \gamma B_0 - \omega$$

$$B_{BCK}^1 = B_0 - \frac{\omega}{\gamma} = B_0(1 - \frac{\omega}{\gamma B_0}) = B_0(1 - \frac{\omega}{\omega_0})$$

$$T = [M \times B_1]$$
Импульсный ЯМР. Поворот вектора намагниченности

\[\Theta = \gamma B_1 \tau \]
Импульсный ЯМР. Получение спектра

\[F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt \]

\[\int_{0}^{\infty} e^{-t/T_2} \cdot \cos(\omega_0 - \omega)t dt = \]

\[= \frac{T_2}{1 + T_2^2 (\omega_0 - \omega)^2} \]
Импульсный ЯМР. Измерение T_1 и T_2

$180^\circ - \tau - 90^\circ$

$M(\tau) = 2M_0[1 - \exp\left(-\frac{\tau}{T_1}\right)]$

$90^\circ - \tau - 180^\circ$
Multiple Hahn echoes following Carr, Purcell, Meiboom, and Gill (CPMG):

\[
M(t) = M_0 \exp\left(-\frac{t}{T_2}\right)
\]

Последовательность КПМГ

\[
\left(\frac{\pi}{2}\right)_y - \frac{\tau_e}{2} - (\pi)_x - \tau_e - (\pi)_x - \tau_e -
\]
Что влияет на T_1 и T_2?

$T_{1\text{bulk}} \approx 0.01 \frac{T^0}{\eta}$

$T_{2\text{bulk}} \approx T_{1\text{bulk}}$

\[
\frac{1}{T_{1,2\text{surf}}} = \rho_{1,2} \left(\frac{S}{V} \right)
\]

Поверхность

\[
\frac{1}{T_{2\text{dif}}} = \frac{D(\gamma G \tau)^2}{12}
\]

Диффузия

$D_{w,o} \approx \left(\frac{T^0}{298\eta} \right) \cdot 10^{-5} \text{ см}^2 / \text{c}$

Вода, нефть

$[\eta] = c\Pi_3$

Присутствие парамагнитных частиц - ионов

$\text{Gd, Fe, Mn, Co, Ni, Cu}$

- резко ускоряет релаксацию
Приложения: релаксометрия

\[
\frac{1}{T_{1,2\text{surf}}} = \rho_{1,2} \left(\frac{S}{V} \right)
\]
ЯМР: релаксометр
ЯМР- томография (МРТ)

Градиент G - выбор проекции

$$G_x = \frac{\partial B_z}{\partial x}$$

$$\omega(x) = \omega_0 + \gamma G_x x$$
G_z: катушка Максвелла

Г~15-45 мТл/м
G_{xy}: катушки Голея
Volume-selective MR spectroscopy, where it is commonly referred to as the STEAM (STimulated Echo Acquisition Mode) technique.

\[
\Delta x = \frac{2\pi \Delta \nu}{\gamma G_x} = \frac{2\pi \cdot \Delta \delta \cdot v_0}{\gamma G_x} = \frac{B_0 \Delta \delta}{G_x}
\]
Времена релаксации протонов некоторых тканях человеческого организма

<table>
<thead>
<tr>
<th>Вид ткани</th>
<th>Содержание, %</th>
<th>T_1, мс</th>
<th>T_2, мс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сердце</td>
<td>80,0</td>
<td>850</td>
<td>47</td>
</tr>
<tr>
<td>Мозг (серое вещество)</td>
<td>70,6</td>
<td>850</td>
<td>71</td>
</tr>
<tr>
<td>Почка</td>
<td>81,0</td>
<td>860</td>
<td>58</td>
</tr>
<tr>
<td>Печень</td>
<td>71,1</td>
<td>350</td>
<td>30</td>
</tr>
</tbody>
</table>
ЯМР в неоднородном поле (каротаж)

\[B_0 = B_0(r) \]
\[\omega(r) = \gamma B_0(r) \]
Спектрометры ЯМР

VARIAN

BRUKER

www.bruker.fr

JEOL
Литература

Керрингтон А., Мак-Лечлан Э. Магнитный резонанс и его применение в химии — М., 1970.
Эмсли Дж., Финей Дж., Сатклиф Л. Спектроскопия ядерного магнитного резонанса высокого разрешения. Т. 1,2. М.: Мир, 1968.
Дрого П. Физические методы в химии, - М.: Мир, 1981. Т.1,2.
Бенуэлл К. Основы молекулярной спектроскопии. М., Мир 1985.
Blumich B. Essential NMR. Springer, 2005